

An introduction to Biosimilars

Cancer Vanguard Overview

- The Cancer Vanguard comprises
 - RM Partners
 - UCLH Cancer Collaboration
 - Greater Manchester Cancer Vanguard Innovation
- These three local delivery systems are transforming the clinical model of cancer care delivery by providing evidence based solutions that can be replicated nationally

Vanguard and Sandoz Joint Working

The Cancer Vanguard is about driving innovation

- One innovation coming to cancer treatment in the NHS is a group of medicines called biosimilars
- Sandoz, a Novartis Division, pioneered the science of biosimilars and its biosimilars have been used in the NHS for over ten years
- The Cancer Vanguard have partnered with Sandoz to develop a process for evaluating biosimilars through education and research

Agenda

What are biologics?

What are biosimilars?

How are biosimilars developed?

What are biologics?

What are biologics?

Paracetamol

Small molecule

\$\$1,

- Chemical synthesis
- Single substance
 - 151 Da
- MoA ambiguous

Filgrastim (a growth factor)

Protein (without sugars)

- Made using bacteria
- Single main substance
- One chain, 175 amino acids
 - 18,803 Da
 - Receptor binding only

Antibody (mAb)

- Made using mammalian cells
 - Mixture of variants
- Four chains,1330 amino acids
 - 144,000 Da
- Receptor binding, effector functions

Note: Illustrations not to scale.

Biologic manufacture

Biologics are produced from living organisms

Impact of manufacturing changes

 Manufacturing changes can create variability in the biologic molecule

Variability is in the nature of biologics

Manufacturing changes are tightly regulated

Vezér B, Zrubka Z et al; CMRO, 2016, 32:829-834

What are biosimilars?

Biosimilars are nothing new

- In 2006 the first biosimilar became available in the UK
- Since this time the safety profile of biosimilars has been consistent with the reference products and the product class^{1,2,3}
- Biosimilars are now in routine use in the NHS, particularly in rheumatology and gastroenterology
- 1. Gascon P et al Support Care Cancer. 2013; 21(10): 2925–2932
- 2. Romer et al Horm Res 2009; 72(6): 359-369.
- 3. For full adverse event profiles, please refer to Zarzio and Omnitrope SPCs available at: www.medicines.org.uk/emc

Biosimilar-a regulatory term

 A biosimilar is "essentially the same" as the reference biologic medicine with some natural

"The <u>active substance</u> of a biosimilar and its reference medicine is <u>essentially the</u> <u>same</u> biological substance, though there may be minor differences due to their complex nature and production methods.

<u>Like the reference medicine, the biosimilar has a degree of natural variability.</u> When approved, its variability and any differences between it and its reference medicine <u>will have been shown not to affect safety or effectiveness."</u>

How are biosimilars developed?

Biosimilars are highly similar to reference biologic

 Biosimilars are approved biologics that have been demonstrated to be highly similar to a reference product

Key requirements for comparability

Highly similar structure and function

- Same primary structure (amino acid sequence)
- Similar higher-order structure
- High quality
- Same biological functions

- Equivalent PK/PD
- Comparable clinical efficacy and safety
- Same presentation, dose (strength)
 and administration mode

European Medicines Agency (EMA). Guideline on similar biological medicinal products. CHMP/437/04 Rev 1/2014 [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/10/WC500176768.pdf [Accessed 2016 March 18]; US Food and Drug Administration. Guidance for Industry: Scientific Considerations in Demonstrating Biosimilarity to a Reference Product 2015 [online] Available from URL: www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291128.pdf [Accessed 2016 March 18].

Biosimilars are made to match

 Biosimilars are systematically developed to match the reference product

Adapted from McCamish M & Woollett G 2011. MAbs;3(2): 209-17.

Differences in development

Originator

Major goal is to determine the clinical effect

Biosimilar

Major goal is to determine similarity;

- Establishment of the scientific bridge to the clinical experience of the reference molecule
- Analytical methods provide the most sensitive tools to establish this scientific bridge

Adapted from:

McCamish M, et al. *Mabs.* 2011;3(2):209–17 and McCamish M, Woollett G, Clin Pharmacol Ther. 2012;91(3):405-17

Development approach for biosimilars is closer to originators than to generics

		Generic	New biologic	Biosimilar
7	Time to market (years)	2–3	8–10	7–8
•0	Clinical studies	Bioequivalence studies in healthy volunteers	Phase I, II, III efficacy and safety studies	Comparative phase I pharmacokinetic and Phase III study
	Patients (n)	20–50	800–1000	~500
Ĕ	Post-approval activities	Pharmacovigilance, Risk Management Plan in special situations	Phase IV, Risk Management Plan including Pharmacovigilance	Phase IV, Risk Management Plan including Pharmacovigilance

Development process

 Focus of biosimilar development is to establish similarity to the reference product

Develop highly similar product

1

Confirm biosimilarity

Post-approval

3

TECHNICAL DEVELOPMENT

- Fully characterise reference product
- Match molecule profile of biosimilar with reference product (structure & function/biological activity)
- Match final dosage form to reference product

PRECLIN | PHASE I | PHASE III

- Demonstrate PK/PD equivalence
- Confirm efficacy and safety via tailored Phase III studies
- Support extrapolation to non-studied indications and interchangeability

PHASE IV | REGISTRIES

 Additional data following the product long-term

Understanding the molecule

 Integration of data from multiple analytical and biological tests provides complete understanding

- Combined data from ~45 different methods provide information on multiple attributes (orthogonality)
- Every attribute is evaluated more than once (redundancy)

Understanding the molecule

 Integration of data from multiple analytical and biological tests provides complete understanding

HIGHER-ORDER STRUCTURE

- NMR
- CD spectroscopy
- FT-IR

POST TRANSLATIONAL MODIFICATIONS

- NP-HPLC-(MS) N-glycans
- AEX N-glycans
- MALDI-TOF N-glycans
- HPAEC-PAD N-glycans
- MALDI-TOF O-glycans
- HPAEC-PAD sialic acids
- RP-HPI C sialic acids

- Combined data from ~45 different methods provide information on multiple attributes (orthogonality)
- Every attribute is evaluated more than once (redundancy)

BIOLOGICAL ACTIVITY

- Binding assay
- ADCC assay
- CDC assay

COMBINATION OF ATTRIBUTES:

MVDA, mathematical algorithms

Totality of the evidence

Biosimilars must be highly similar at all levels

Patient populations

- Choosing the right indication for the clinical data is a critical part of biosimilar development and is done in conjunction with the EMA
- The aim of the biosimilar regulatory study may be different to that of the originator biologic

Patient populations

- Trial populations must be:
 - Sensitive
 - Homogenous

Sensitive populations have:

- Active disease
- Large effect size (drug effect)
- Immunocompetence

This makes it easier to determine the effect of the drug

Homogenous populations have:

- Fairly consistent disease activity
- Less disease/patient confounders
- Minimal interpatient variability

This means smaller sample sizes can be used

Extrapolation of indication

 Extrapolation is based on the entire similarity exercise, including clinical experience with the reference product

'SIMILARITY SPACE'

Post-authorisation activities

- As for any biopharmaceutical, the clinical safety of biosimilars must be monitored through continued pharmacovigilance
- A pharmacovigilance plan must be adopted
 - Involves collection and assessment of AE data, post-approval studies and registries
- The need for risk minimisation strategies must be evaluated
 - Assesses whether strategies are needed beyond the pharmacovigilance plan

- A risk management plan must be submitted
 - Typically includes the same obligations and activities as for the reference medicine

European Medicines Agency (EMA). Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues. EMEA/CHMP/BMWP/42832/2005 Rev. 1. (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/06/WC500144124.pdf) [Accessed 2016 March 23]. Zuñiga L, Calvo B. Pharmacoepidemiol Drug Saf 2010;19:661–9. Choy et al. Semin Oncol 2014;41:S3–S14

Summary

Biosimilars: Summary

- Biologics can be thoroughly analysed and characterised
- Biosimilars are systematically developed to be highly similar to their reference biologic
- Clinical studies aim to confirm the characterisation work
- Extrapolation builds on the entire similarity exercise
- Post authorisation studies continue safety monitoring
- Biosimilars must meet the same quality standards as originator products
- Biosimilars may increase patient access to biologic medicines and contribute to savings for healthcare systems¹

l. Eleryan MG et al. Biosimilars: potential implications for clinicians, Clin Cosmet Investig Dermatol, 2016;17:135-42

Questions?